MTH 520/622: Introduction to hyperbolic geometry

Practice Assignment III

- 1. Given non-negative real numbers α_i , for $1 \le i \le n$ with $\sum_{i=1}^n \alpha_i < (n-2)\pi$, does there exists a hyperbolic *n*-gon with internal angles α_i ?
- 2. Prove the formulas in 3.4 (xii) (a) (d) of the lesson plan, using the following hints:
 - (a) Consider the hyperbolic line which meets the horizontal radius at a distance a from $O \in \mathbb{D}$. Show that this line is the arc of a circle of Euclidean radius $(\sin ha)^{-1}$.

Put a vertex B with angle β at $O \in \mathbb{D}$ so that the vertex C is at distance a from O along the horizontal diameter. Let X be the centre of the Euclidean circle through A and orthogonal to $\partial \mathbb{D}$. Now use Euclidean cosine formula in triangle OAX to prove that

$$\cos\beta = \tanh a / \tanh c.$$

Finally, use hyperbolic Pythagoras Theorem to prove the other identities.

- (b) Hint: Drop a perpendicular from vertex to the opposite side and proceed.
- (c) & (d) Hint: Let the perpendicular from C to AB meet AB in D. If |CD| = h and the angle C in triangle CAD is γ_1 , then verify first that

$$\sin \gamma_1 \cosh h = \cos \alpha.$$