MTH 520/622: Introduction to hyperbolic geometry Practice Assignment III

1. Given non-negative real numbers α_{i}, for $1 \leq i \leq n$ with $\sum_{i=1}^{n} \alpha_{i}<(n-2) \pi$, does there exists a hyperbolic n-gon with internal angles α_{i} ?
2. Prove the formulas in 3.4 (xii) (a) - (d) of the lesson plan, using the following hints:
(a) Consider the hyperbolic line which meets the horizontal radius at a distance a from $O \in \mathbb{D}$. Show that this line is the arc of a circle of Euclidean radius $(\sin h a)^{-1}$.
Put a vertex B with angle β at $O \in \mathbb{D}$ so that the vertex C is at distance a from O along the horizontal diameter. Let X be the centre of the Euclidean circle through A and orthogonal to $\partial \mathbb{D}$. Now use Euclidean cosine formula in triangle OAX to prove that

$$
\cos \beta=\tanh a / \tanh c
$$

Finally, use hyperbolic Pythagoras Theorem to prove the other identities.
(b) Hint: Drop a perpendicular from vertex to the opposite side and proceed.
(c) \& (d) Hint: Let the perpendicular from C to $A B$ meet $A B$ in D. If $|C D|=h$ and the angle C in triangle $C A D$ is γ_{1}, then verify first that

$$
\sin \gamma_{1} \cosh h=\cos \alpha
$$

